

UK-Bangladesh Climate Partnership Forum

A series of webinars and an ongoing, multi-stakeholder dialogue to promote collaboration and lasting partnerships at all levels between the UK and Bangladesh

Partnership is structured around four key COP26 themes

1
Adaptation and resilience

ZNature

Clean energy

4 Finance

LinkedIn Group

UK-Bangladesh Climate Partnership Forum

linkedin.com/groups/12485053/

Twitter

Hashtag: #UKBDcop26

Slides, recordings and reports

More information, slide sets, YouTube recordings, and summary reports of all sessions can be found at MottMac.com/UKBDcop26

Clickable links will be given in the chat →

Programme: moderators and opening remarks

Moderators

Saleemul Huq and Simon Maxwell

Opening remarks

- Robert Chatterton Dickson, British High Commissioner in Dhaka
- Ken O'Flaherty, UK government's COP26 Regional Ambassador for Asia-Pacific and South Asia
- Mr Ahmad Kaikaus, Principal Secretary of the Prime Minister's Office Bangladesh

Scaling up clean energy investments

Programme: speakers

Moving away from coal to cleaner power sources – the UK experience

Scaling up clean energy in Bangladesh

Increasing access to renewable electricity and smart home in the UK

Scaling up investment in the solar power industry in Bangladesh

Jim Watson
Professor of Energy
Policy, UCL Institute for
Sustainable Resources

Mohammad Alauddin Chairman, Sustainable and Renewable Energy Development Authority (SREDA)

Toby Ferenczi
Director of International,
OVO Group

Eshrat Waris
Principal, Product and
Business, SOLshare

UK-Bangladesh Partnership Climate Forum
Clean Energy – 3 February 2021

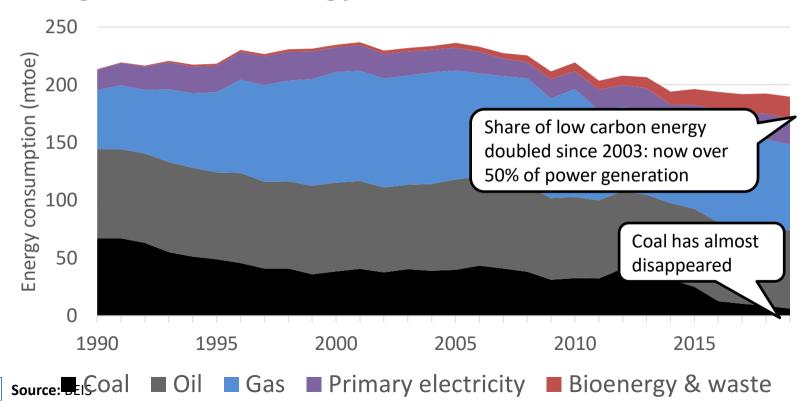
Dr. Ahmad Kaikaus

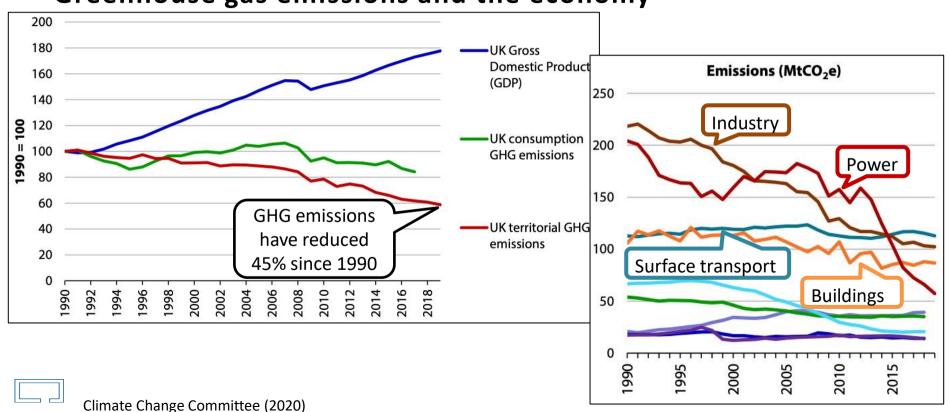
Principal Secretary of the Prime Minister's Office Bangladesh

Moving away from coal to cleaner power sources: the UK experience

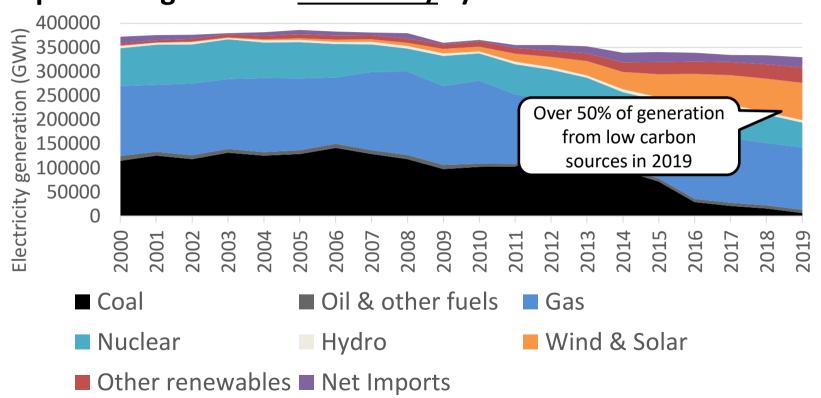
Jim Watson

Professor of Energy Policy, UCL Institute for Sustainable Resources

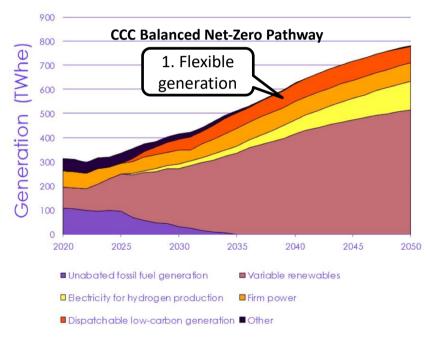

UK-Bangladesh Partnership Climate Forum
Clean Energy – 3 February 2021

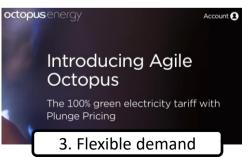


Changes in the UK energy mix since 1990



Greenhouse gas emissions and the economy


Rapid change in the electricity system


Source: BEIS

Getting to a zero carbon electricity system

Source: Climate Change Committee; BBC news; Flexitricity; Octopus

Some lessons from the UK experience

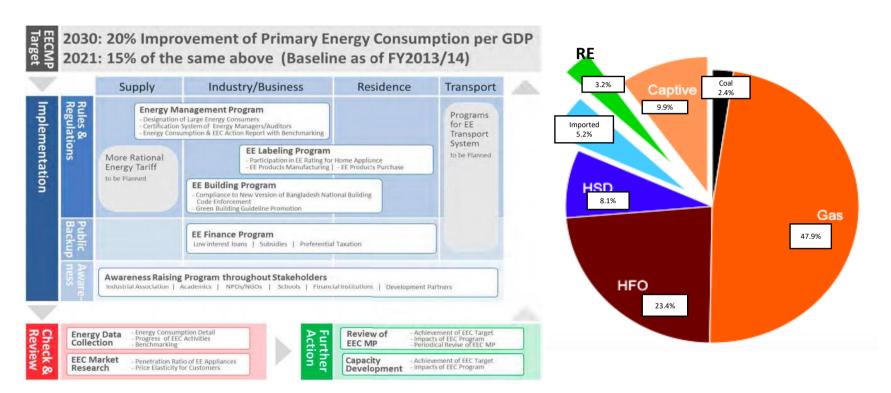
- Important to understand UK circumstances and history:
 - Coal-fired power generation has been declining since 1990 for economic and political reasons
 - Privatisation and liberalization of electricity did not deliver decarbonization: strong climate change policies and regulatory reforms required to accelerate change
- Growth of renewables has been controversial: concerns raised about the 'problem' of intermittency at every stage, but the lights have stayed on!
- Electricity systems can integrate large shares of renewables, but they need to adapt so they are much more flexible
- Reforms of policy and regulatory frameworks essential to enable this adaptation

UK-Bangladesh Partnership Climate Forum Clean Energy – 3 February 2021

Scaling up clean energy in Bangladesh

Mohammad Alauddin

Chairman, Sustainable and Renewable Energy Development Authority (SREDA)



Sustainable & Renewable Energy Development Authority

State of Affairs in RE & EE: Bangladesh

Figure: Energy Efficiency & Conservation Master Plan up to 2030

Figure: Electricity Generation Mix

Solar Energy: Applications

- Solar Home Systems
- Rooftop Solar
- Solar Park
- Solar Mini-Grid
- Solar Irrigation
- Solar Drinking Water System
- Floating Solar
- Solar water heating
- Solar Powered Cold Storage
- Solar Street Light
- Solar Powered Telecom Tower

Solar Park 7 Projects: 175.2 MWp

5.8 Million SHSs \geq 300 MWp

SIP >2000 ≃47 MWp IDCOL, BERB, BADC, BMDA, RDA

26 SMG **≃** 5 MWp

Rooftop Solar: Cost Estimation

Rooftop Space

500 m²

Solar System **60 kWp**

Cost/Wp

BDT 50

CO₂ Reduction

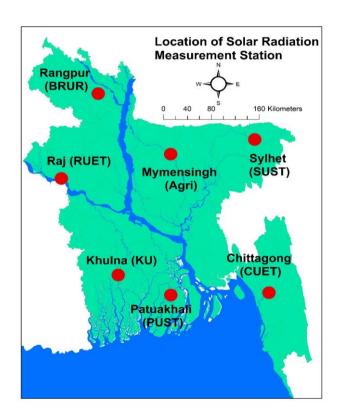
620 ton

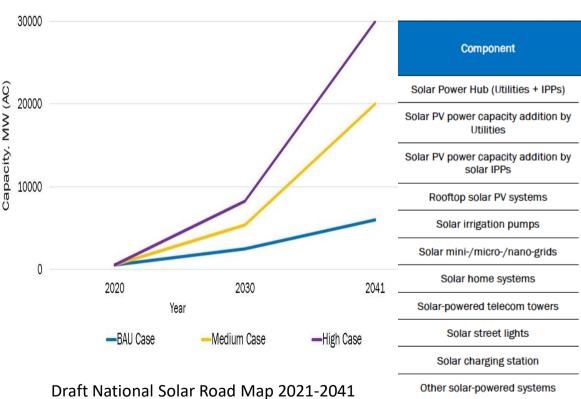
Total 1220 rooftop solar system (≈18MW) have been installed under Net Metering Scheme

OT "			01
SL#	Item	Price	Share
1	Solar PV Module	15,90,000/-	53%
2	Module Mounting Structures	2,40,000/-	8%
3	Solar Grid-tied Inverter	5,00,000/-	16.66%
4	Hybrid/Fuel Save controller	1,50,000/-	5%
5	Monitoring & Communication	4E 000/	1.5%
	System	45,000/-	
<mark>6</mark>	Energy Meter (SCM + SGM + NEM)	50,000/-	1.67%
7	PVC Pipe and Combiner Box	50,000/-	1.67%
8	Earthing/Lightning protection,		8
	cable and maintenance free	80,000/-	2.67%
	Chemical earthing		2
9	Cables, Connectors and other parts	1,20,000/-	4%
10	Cleaning system:		/
	Walkway, Handheld unit, Pump	30,000/-	1%
	etc.		/
11	Safety Equipment for O&M:		
	Rapid Shut-down Device, Circuit	65,000/-	2.16%
	breaker, Surge protector etc.		
12	Transportation, Installation &	50,000/-	1.67%
	Interconnection, Commissioning	30,000/-	1.07 /0
13	Design & Consultancy	20,000/-	0.66%
14	Legal Communication & Other	5,000/-	0.17%
	costs	3,000/-	U.17 70
15	Environmental Consultancy	5,000/-	0.17%
	TOTAL PROJECT COST	30,00,000/-	100%

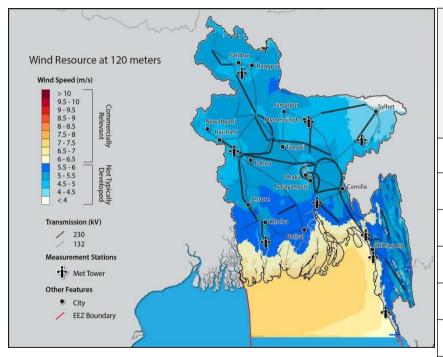
Opex Model (LT Flat)

Tariff of the consumer: 8.53 BDT(10 USC)/kWh. Let, Negotiated OPEX tariff: 7.50 BDT (9 USC)/kWh


1st year: Electricity Generation 71,281 kWh


Benefit of Industry Owner	Benefit of OPEX Investor
71,281 × (8.53 – 7.50)	71,281 × (7.50 – 3.60)
= 73,419 BDT (866 USD)	= 2,77,996 BDT (3278 USD)

20 years: Electricity Generation 13,07,978 kWh


Benefit of Industry Owner	Benefit of OPEX Investor		
13,07,978 × (8.53 - 7.50)	13,07,978 × (7.50 – 3.60)		
= 13,47,217 BDT (15887 USD)	= 51,01,114 BDT (60155 USD)		

Solar Energy Potential

Wind Energy Potential

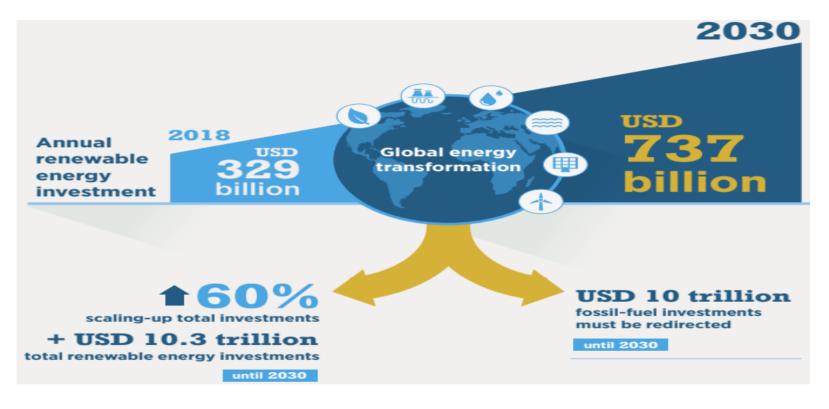
Wind Speed Range (m/s)	Square Kilo me ters (K m²)	Acres	Estimated MW (based on 0.6 Km ² per MW)
0 to 4.75	14,769	3,647,943	24,320
4.75 to 5.25	51,966	12,835,602	85,571
5.25 to 5.75	37,728	9,318,816	62,125
5.75 to 6.25	<mark>12,276</mark>	3,032,172	<mark>20,214</mark>
6.25 to 6.75	6,093	1,504,971	10,033
6.75 to 7.25	2,196	542,412	3,616
7.25 to 7.75	162	40,014	267

Source: NREL RE data

BPDB has taken initiative to implement 150MW onshore wind power plant at 3 places of the country with a capacity of 50MW each at Mongla, Chadpur, Inani.

Policy Landscape

- BERC Act, 2003
- Quick Enhancement of Electricity & Energy Supply (Special Provisions) Act 2010
- SREDA Act 2012
- BEPRC Act, 2015
- Private Sector Power Generation Policy of Bangladesh
 1996
- Renewable Energy Policy of Bangladesh, 2008
- Policy Guideline for SPP in Private Sector, 2008
- BCCSAP, 2009
- Nationally Determined Contribution of Bangladesh,2015
- PSMP 2016
- Net Metering Guidelines, 2018


Incentives

- Exemption from corporate income tax
- Foreigners are exempted from income tax for 3 years since their arrival.
- Tax exemption on interest on foreign loans.
- Tax exemption on Royalties, Technical know-how & Technical Assistance Fees.
- Exemption of import tax, VAT & supplementary duties (if any) on 16 items of solar panel.

Challenges

- Scarcity of land
- Comprehensive RE map
- Variability
- Limited institutional capacity
- Quality assurance of the products & services
- Financing/investment

Investment in Renewables in 2030

GoB has invested around \$ 800 million in Renewable Energy in last 10 years while investment from development partners through IDCOL remained \$ 582.

"Investing in clean energy is investing in sustainable future"

Thank You

Increasing access to renewable electricity and smart home in the UK

Toby Ferenczi

Director of International, OVO Group

UK-Bangladesh Partnership Climate Forum
Clean Energy – 3 February 2021

Transmission and Distribution

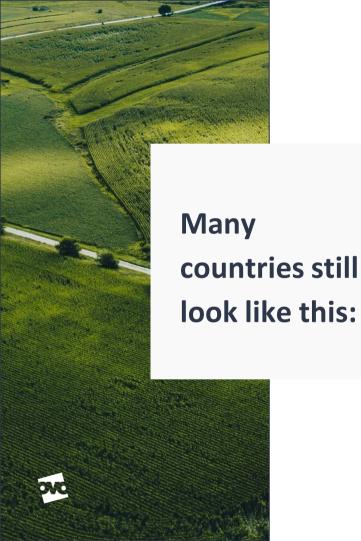
Retail

Customer

energy value

Generation

Transmission and Distribution



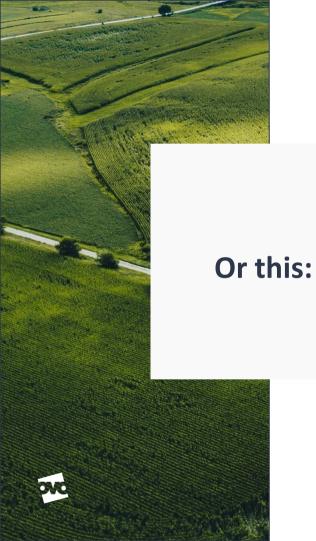
Retail

Customer

State owned monopoly

Generation

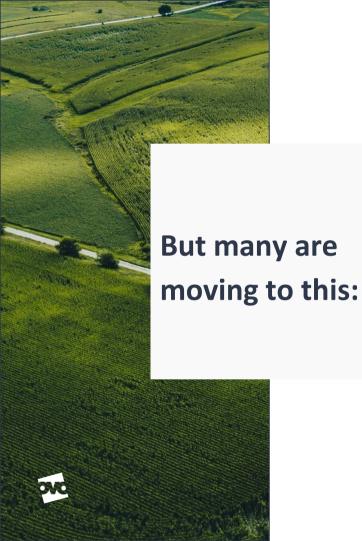
Transmission and Distribution



Retail

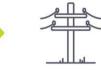
Customer

State owned monopoly


Generation

Transmission and Distribution

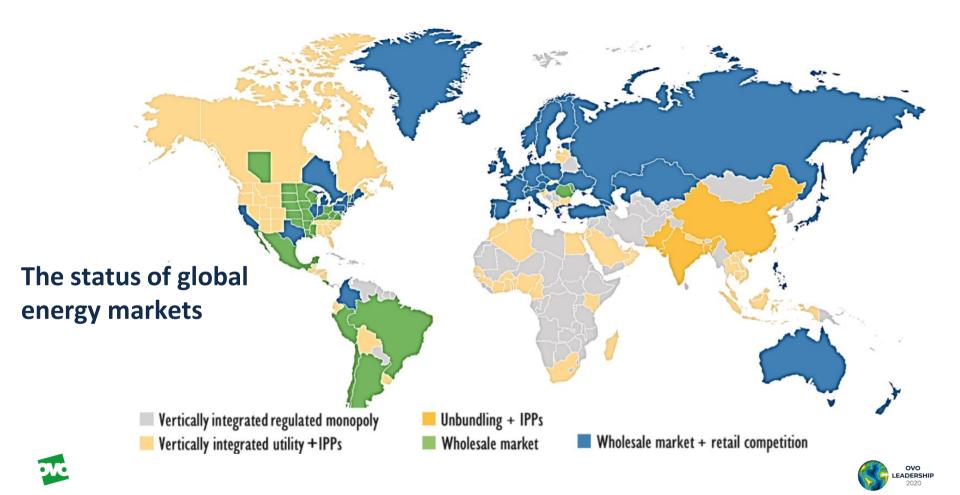
Retail


Customer

Transmission

Distribution

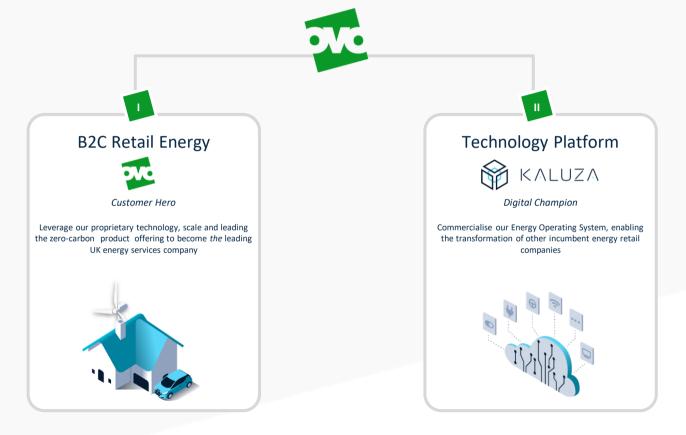
Reduction in thermal usage, increase in large renewables



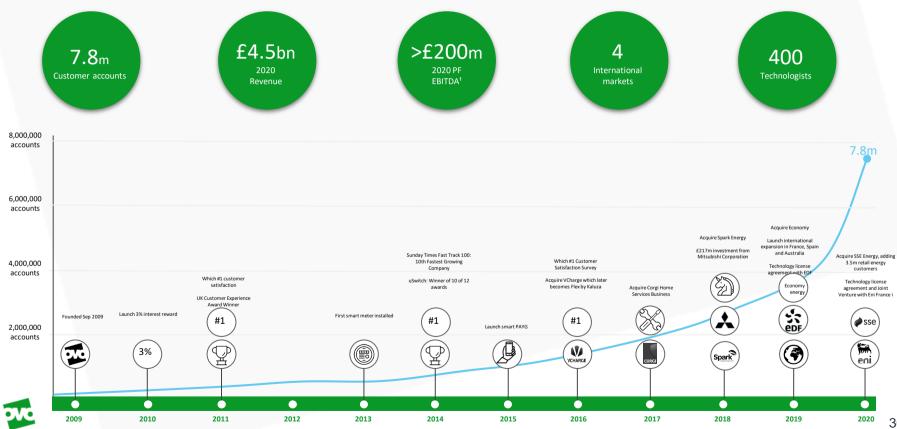
Increase in embedded generation e.g. wind, solar

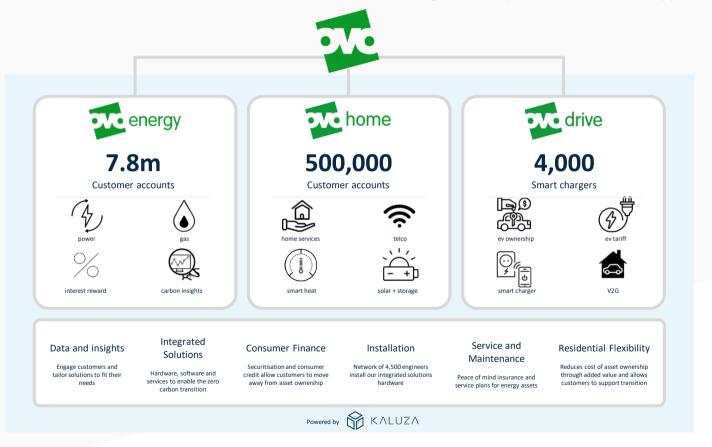
Smart meters, EVs, electric heat, solar and other tech means consumers play a bigger role in the energy system

DECENTRALISED DIGITAL ENERGY SYSTEM


To have a world with 100% renewable energy, you need to flip the power system on its head - controlling demand to meet uncontrollable supply - requiring data mastery and unyielding customer centricity

OUR FORMULA FOR SUCCESS


A platform driving electrification and decarbonisation



OUR JOURNEY

The only digitally enabled energy retailer at scale - Now we're commercialising our technology globally

We give our customers the tools to make the transition to a zero carbon life driving attractive product and cross sell opportunities

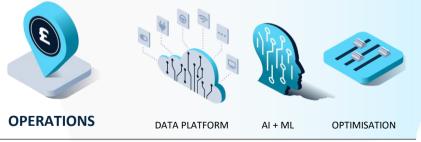
KALUZA TECHNOLOGY PLATFORM

Powering OVO's UK and International retail businesses - Kaluza's platform delivers a market leading customer experience whilst also delivering the lowest cost to serve in the industry

DRIVING INCREASED CUSTOMER LIFETIME VALUE THROUGH CUSTOMER & DATA LED NEXT BEST ACTION +75% Reduction in EV

OVO accounts

DRIVING LOWER COST TO SERVE¹


Happier

(increased NPS vs legacy)

charging costs

38

THROUGH DATA, OPTIMISATION AND LOWER PTC

(1) Versus legacy

LEVERAGING TECHNOLOGY TO DELIVER VALUE

We deliver a feature packed customer experience, engaging our customers in the energy transition and creating value for them (and us)

In an OVO zero carbon home, we monitor and optimise the charging of your electric vehicle, picking the cheapest half hours of the day, or times when you have excess solar to charge up

At night, our revolutionary smart vehicle-to-grid charger takes excess energy out your cars battery, using it to power your home when prices are highest, saving you

customer benefit

£250 a year

savings equivalent to 6,000 miles of free driving

The Guardian

Ovo to launch 'half-price' electric vehicle charging tariff

New Drive Anytime rate bids to mirror rivals' off-peak tariff with savings of 60% a year, supplier claims

▲ Ovo claims its 'type of use' tariff will be less than half the typical rate of rival suppliers by automatically charging vehicles when prices are low. Photograph: Andrew Matthews/PA

Ovo Energy plans to launch an electric vehicle charging tariff, at half the usual price, to compete with typical off-peak rates even when electricity demand is at its highest.

The UK's second-largest energy supplier will set the tariff at a flat rate of 6p per kilowatt-hour no matter what time of day their customers choose to charge their vehicle, in direct competition with suppliers which offer cutprice charging during set hours overnight.

GLOBAL EXPANSION

Across the globe, energy retail markets are deregulating and becoming more competitive, creating a global opportunity for us to realise value in multiple ways

License our Kaluza technology solutions to incumbent utilities and energy retailers - allowing access to scale customer bases

Live in UK with EDF Energy (Flex)

Joint Venture

Combine Kaluza technology, OVO retail operating capability and incumbent energy retailers creating a winning joint venture.

JV with ENI in France

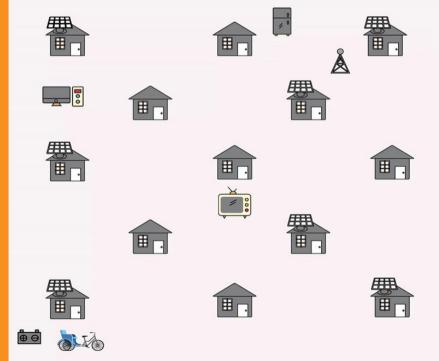
UK-Bangladesh Partnership Climate Forum
Clean Energy – 3 February 2021

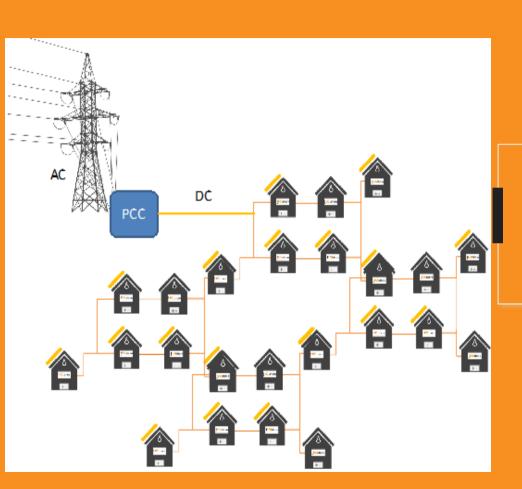
The future of energy begins with Bangladesh

Eshrat Waris

Principal, Product and Business, SOLshare

THE FUTURE OF ENERGY BEGINS WITH BANGLADESH


Eshrat Waris
Principal, Product & Business


ME SOLshare Ltd. www.me-solshare.com

Peer to Peer Energy Trading

Point of Common Coupling

Charging Local Teslas

Next event

Climate Finance
Wednesday 3 March
1pm UK time / 7 pm BD time

Speakers will include amongst others:

- Dr. Atiur Rahman, Governor,
 Central Bank of Bangladesh 2009-2016
- Greater Manchester IGNITION Project
- Prof. Mizan R. Khan, Deputy Director, ICCCAD and Programme Director, LUCCC

Updates via MottMac.com/UKBDcop26. Registration link in the chat →

LinkedIn Group

UK-Bangladesh Climate Partnership Forum

linkedin.com/groups/12485053/

Twitter

Hashtag: #UKBDcop26

Slides, recordings and reports

More information, slide sets, YouTube recordings, and summary reports of all sessions can be found at MottMac.com/UKBDcop26

Clickable links will be given in the chat →

UK-Bangladesh Climate Partnership Forum

Moderators

Simon Maxwell

Senior Research Associate
Overseas Development Institute

Prof. Saleemul Huq

Director of the International Centre for Climate Change and Development