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Executive summary 

A recent magazine article described an A-to-Z of sensor applications: 

Aerospace, Beverage vending, Crops, Disease detection, Earthquakes, Forest fires, 
Greenhouses, Health, Internet search, Jellyfish, Kitchens, Lighting, Medical devices, NFC 
payment, Odour, Parking, Quantum-cascade laser, Radiation monitoring, Sport, Traffic, 
Underground, Vehicle accident, Waste management, Xbox 360, Yachts, Zebras.  

Sensors such as these will form the basis of the Internet of Things (IoT). Intelligent IoT 
applications are likely to affect almost every aspect of our lives.  

IoT applications monitor and interpret their environment based on large amounts of incoming 
data from sensors and other data sources. This data is analysed in sophisticated ways that 
enable IoT applications to respond appropriately to external events that they may not have seen 
before. This means that IoT applications are not restricted to monitoring and interpretation - they 
can also be used to control things. 

As can be seen from the A-to-Z list above, the same basic architecture is applicable to a very 
wide range of potential applications. Some of these are discussed in Section 2. According to 
Forrester Research, global IoT revenues will be thirty times those of the internet by 2020, 
making it the next trillion dollar communication industry.  

This white paper provides an introduction to the Internet of Things. It describes how the IoT 
architecture is likely to evolve, and considers the future potential of the technology along with 
some possible problems. 
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1 Introduction 

1.1 Architecture 
At its heart, the Internet of Things consists of billions of monitoring and control devices that use 
the internet to send data back to a central point for analysis, as illustrated in Figure 1: 

Figure 1: IoT Architecture 

 
Source: Mott MacDonald 

The End Devices shown in Figure 1 could include: 

● Sensors that measure a physical quantity (eg temperature, pressure, vibration) or report on 
status (eg valve open / shut, alarm on / off) 

● Actuators that enable some form of remote control (eg turning equipment on / off, changing 
the setting of a valve) 

Although current end devices typically contain a significant level of local intelligence and 
communication capability, it is anticipated that the Internet of Things will evolve towards 
applications that use much larger numbers of simple, low-cost end devices. For example, a 
single home could contain as many as 1,500 devices to monitor and control everything from 
lighting and heating to entertainment and security systems. To make such a concept viable, 
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these devices would have to be very cheap to produce, consume very little power and 
communicate without the need for cables. 

The primary role of the Aggregator Nodes shown in Figure 1 is to interface the end devices to 
the internet. Low-cost end devices cannot justify the cost or the power required for an internet 
connection, and connecting them directly to the internet would open up a range of security 
issues. Furthermore, these end devices typically generate very little data (maybe only a few bits 
per hour) and internet protocols would be hopelessly inefficient at such low bit rates. The 
aggregator nodes therefore enable a large number of very simple, low cost devices to 
communicate efficiently and securely across the internet. Where a small number of more 
sophisticated end devices are used, they might be connected directly to the internet without the 
need for an aggregator node. 

The Application Platform shown in Figure 1 collects and manages the “big data” that can be 
generated by a very large array of end devices. It also provides sophisticated data analytics to 
extract useful information from the raw data, and to present this information on convenient user 
interfaces such as laptop computers and smartphones. Where appropriate, an IoT application 
can be empowered to make decisions and take actions without human intervention.  

In some cases, the required data can be obtained from web-based data sources, thereby 
reducing the number of sensors that need to be deployed and managed. Examples of such 
sources might include news feeds, transport information and real-time rainfall data. It is also 
possible to scavenge or infer data; for example, measurement of electrical harmonics and how 
they change over time can be used to characterise machinery without the need for a large 
number of separate sensors. As another example, scanning Twitter for certain key words can 
provide utilities with an early indication that their customers are experiencing problems in a 
particular area. 

1.2 Machine-to-Machine (M2M) Communications 
The Internet of Things evolved from the earlier concept of Machine-to-Machine (M2M) 
communications. Although the two terms are often used interchangeably, there are some 
significant differences as set out in Table 1 below: 

Table 1: Comparison of M2M and IoT 
Machine-to-Machine (M2M) Internet of Things (IoT) 
M2M applications are typically based on intelligent  
modules embedded within a machine. 

In addition to standard M2M end devices, IoT also 
accommodates inexpensive, low-power devices. 

M2M solutions typically rely on point-to-point 
communication using either cellular or wired networks. 

IoT solutions are likely to rely on very low cost wireless 
access networks with internet backhaul. 

M2M data is typically processed in a dedicated software 
application that is targeted at point solutions in service 
management applications. 

The end device data may be processed using big data 
analytics and other enterprise applications to improve 
overall business performance.  

M2M systems typically generate relatively low-level data 
that is useful to technical staff. 

IoT outputs can indicate higher-level trends, and so can 
also be useful to marketing and management staff. 

 

Although the distinction between M2M and IoT inevitably becomes blurred in some situations, it 
is generally true to say that IoT collects data from a larger range of devices, and processes the 
data to extract useful information in a much more sophisticated and flexible way. As a result, the 
range of applications for IoT goes well beyond traditional M2M applications. 
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1.3 Peer-to-Peer 
In the IoT architecture described above, the end devices can only communicate with an 
application platform. However, the term Internet of Things is sometimes used to refer to 
arrangements in which all the end devices are directly connected to the internet. In this 
situation, it is worth considering whether it would be more efficient for the end devices to 
communicate directly (peer-to-peer) rather than via the application platform. 

Adopting a peer-to-peer architecture is superficially attractive because it would allow the Internet 
of Things to escape from the limitations of centralised command and control. However, there 
are a number of reasons why this would not be such a good idea: 

● If the end devices have enough processing power to support peer-to-peer communication, 
they would be significantly more expensive and power-hungry than the devices described in 
Section 1.1 above. Whilst there can be requirements for devices of this type (eg video 
cameras) within the IoT, a more normal requirement is for much simpler devices. Minimising 
the cost and power requirements of the end devices enables a much larger array of 
parameters to be monitored, and this significantly improves the quality of the information 
produced.  

● There is no obvious reason why most end devices would need to talk to each other. Why 
would a pressure sensor need to talk to a thermostat or a light switch? 

● Keeping objects as simple as possible minimises the risk of hardware / software failures, 
configuration errors and technology obsolescence. 

● Peer-to peer networking would require the devices to be directly visible on the internet, and 
this would make them more vulnerable to hacking. 

● Maintaining a tree structure rather than peer-to-peer mesh makes network routing decisions 
much simpler, thereby promoting scalability. 

Having said that, it is possible to envisage some level of peer-to-peer networking between 
aggregator nodes, and this might be needed in some real-time control applications where 
latency must be kept to a minimum. Peer-to-peer networking might also be appropriate between 
expensive, highly-capable end devices such as smart TVs and audio systems; Qualcom have 
developed the AllJoyn open-source, peer-to-peer networking platform for applications of this 
type. 
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2 Applications  

As explained in Section 1, the Internet of Things can trace its origins back to the monitoring of 
critical infrastructure and machinery used in industrial processes. However, IoT has extended 
the original M2M concept to address a much wider range of applications, as illustrated by some 
of the examples given in this section. 

2.1 Industry 

Machines are often monitored to detect problems such as overheating or excessive vibration. 
IoT takes things a stage further by allowing a range of parameters to be tracked over time and 
analysed so that conditions that previously led to a breakdown can be recognised and detected 
when they occur again. This approach often allows intervention to take place before a fault 
actually occurs, thereby avoiding the cost and disruption caused by unplanned downtime. 
Further efficiency improvements can come from benchmarking the performance of a machine 
with comparable machines in other factories and by migrating to condition-based maintenance 
regimes. 

The IoT has an important role to play in situations where plant and machinery is located in 
remote or inaccessible places. For example, it can be used for integrity monitoring of oil 
pipelines, storage tanks and pumps, and any damage or deterioration can be correlated with 
environmental factors such as weather and pollution. 

2.2 Transport 
Railways use track-mounted condition monitoring devices to check for train problems such as 
worn wheel rims and overheating bearings. Aircraft engine manufacturers offer services that 
monitor the performance of their engines in flight to detect potential problems before they 
become critical. 

Major roads can be fitted with sensors to detect the volume of traffic and identify the location of 
any accidents. This information can be correlated with social media and mobile phone traffic in 
the area to enhance the quality of the information. Active signage can be used to adjust speed 
limits dynamically to suit weather and traffic conditions, and cars can connect to the system to 
obtain this information directly. IoT can also help motorists to find the nearest empty parking 
space in a town centre. 

2.3 Utilities 
IoT-based smart grid technologies are enabling power networks to reduce their carbon footprint 
and operate more efficiently. These technologies will become increasingly important as we 
move to a low-carbon world in which electricity displaces fossil fuels for transport (electric 
vehicles) and heating (heat pumps). Integrating IoT devices into anything that consumes 
electricity allows demand patterns to be monitored and modified to match the available supply. 
Demand management allows peaks in consumption to be flattened so that generation plant 
(including renewable generation) can be used more efficiently. IoT can also help to reduce 
repair times, improve network safety, reduce energy theft and provide much more accurate 
predictions of customers’ future energy usage. 
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In water networks, IoT applications can improve the management of water pressure (and 
pressure transients) to reduce the incidence of burst pipes. They can also predict the impact 
that weather events will have on drains and sewage systems, thereby allowing action to be 
taken to minimise the risk of overflows. Energy costs for remotely-located plant can be 
optimised, and maintenance costs can be reduced by proactively detecting problems before 
they become critical. Many customer problems can be detected by monitoring Twitter for certain 
key words. 

2.4 Smart Buildings & Infrastructure  
Smart buildings attempt to adapt to their residents’ changing needs and personal preferences 
during the course of a day. This can include adjusting the heating or air conditioning depending 
upon the weather forecast and whether anyone is at home. Lighting, curtains and music can all 
be controlled to make the home more welcoming or to deter burglars. Automatic settings can be 
manually overridden from a smartphone app, so a system that expects the occupant to return 
from work at a particular time (based on past experience) can be told if they will be staying out 
late. 

The idea of buildings that adapt to their users can be extended to smart hotels, smart offices, 
smart shops and smart cities. These cities could include smart bridges, smart tunnels and smart 
public spaces – and every other conceivable form of smart infrastructure. An IoT application 
could monitor infrastructure for indications of environmental conditions or structural changes 
that could compromise safety, and might also schedule any necessary repairs or preventative 
maintenance.  

The Chicago Array of Things provides an example of a public initiative to stimulate the 
development of IoT applications by deploying a wide range of sensors around a city and making 
the data freely available to application developers. Initiatives of this type are likely to stimulate 
economic activity in the areas where they occur, and so are likely to be widely copied1.  

                                                      
1 https://arrayofthings.github.io/ 
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2.5 Healthcare 
For some time now, the benefits of telehealth and telecare to both patients and the healthcare 
system have been widely recognised. Telehealth allows parameters such as heart rate, blood 
pressure or the performance of a pacemaker to be monitored remotely, thereby allowing 
patients with chronic conditions to be discharged from hospital. Telecare allows discreet 
monitoring of elderly or vulnerable people to enable them to live normal lives secure in the 
knowledge that help will arrive quickly if it is needed.  

These trends have been reinforced by smartphone apps and “wearable tech” that allow medical 
issues to be identified early – often before the patient has become aware that anything is wrong. 

2.6 Safety & Security 
IoT end devices can include things like smoke alarms and intrusion detectors, thereby allowing 
the IoT to be used in safety and security applications. Since the IoT includes actuators as well 
as sensors, it is possible for the system to respond automatically to potentially-dangerous 
situations. For example, the appropriate response if smoke is detected might be to turn on the 
lights in the area, trigger a fire alarm, release the fire doors and summon the fire brigade.  

Since an emergency can sometimes trigger large numbers of alarms that can confuse a human 
operator, the IoT should attempt to convert this raw data into useful information. This could be 
useful in earthquake or tsunami early-warning systems, where a large number of alarms can 
arise almost simultaneously. 
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2.7 Tracking of Tagged Items 
Tracking the movement of tagged items is a key IoT capability. RFID tags are already used for 
tagging warehouse stock, parcels, cars, bicycles, pets, farm animals and even visitors to theme 
parks. IoT applications can also be used for fleet management and for tracking high-value 
assets. 
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3 Communication Technologies 

The Internet of Things needs a detailed understanding of the environment that it is monitoring 
(and possibly controlling), so it is critically dependent on being able to communicate with a large 
number of sensors and other remote devices. This section considers the range of data 
communication technologies that are suitable for connecting the end devices to the aggregator 
nodes shown in Figure 1. 

3.1 Requirements 
Some key requirements for communicating with IoT end devices are set out in the table below:  

Table 2: End Device Communication Requirements 
 Requirements 
Scalability The number of end devices required by IoT applications is growing rapidly. In the near future, 

IoT communications solutions may have to handle billions of separate devices. It has been 
estimated that human beings in urban environments are each surrounded by 1,000 to 5,000 
trackable objects2, suggesting that the number of end devices globally will eventually be 
numbered in trillions.  

Cost In order to make the IoT concept viable for large numbers of end devices, the cost of each 
end device and its associated communication channel may need to be as low as a few 
pounds. For some potential applications, even this may prove to be too expensive, so end 
devices and the associated communication links need to be really simple and cheap. This 
almost certainly means that some form of wireless communication will be required to 
minimise installation and cabling costs. It also means that end devices must work straight out 
of the box without the need for setup and configuration procedures. 

Working Life There are some applications where the up-front cost of the sensor may not be the primary 
concern. Examples might include sensors that are embedded in infrastructure in a way that 
makes them hard or impossible to replace, such as strain gauges mounted inside suspension 
bridges or sensors in the core of a nuclear power station. In these circumstances, the 
working life of a sensor may have to match the working life of the infrastructure that it is 
monitoring, and the focus needs to be on whole-life cost rather than first-in cost. 

Power End devices connected by wireless links will often need to be battery-powered. Regular 
battery replacement is expensive, so devices such as smart gas meters are required to 
operate for at least ten years between battery changes. In some cases, end devices may be 
powered by energy harvesting rather than by a battery, but there would still be a need for 
very low power consumption.  

Coverage Many end devices are likely to be installed inside buildings – and some may even be in 
cellars or underground chambers – so radio links will require significant building penetration 
to avoid the need for site surveys. Some IoT applications will require national or even 
international coverage, but this will be provided by the internet backhaul. 

Reliability Communication with end devices must be reliable. Although the occasional loss of 
communication would not be a major problem, the inability to communicate with a large 
number of end devices as a result of a wider network problem is potentially more serious. 
Network problems could range from fading caused by heavy rain to a bug in a new software 
release. 

Coexistence For cost reasons, radio communication with end devices will normally have to take place in 
unlicensed frequency bands. The wireless technology selected will have to be able to share 
the spectrum with other users without causing or suffering from significant interference. 

Security As shown in Figure 1, IoT applications are normally connected to the internet so cyber 
security precautions are required to protect against threats such as hacking and malware. 
The IoT will also create new security issues, such as spoof sensors. Wherever possible, the 

                                                      
2 Jean-Baptise Waldner, quoted in http://blog.nskinc.com/IT-Services-Boston/bid/206613/Apple-s-Continuity-and-the-Internet-of-Things 
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 Requirements 
aim should be to implement security overheads in the aggregator nodes rather than in the 
end devices. 

Broadcast message 
capability 

There are some situations in which the same information needs to be distributed to a large 
number of end devices at the same time. Sending a separate message to each device 
individually would be hopelessly inefficient, so a broadcast capability is required. 

Small data packets An IoT sensor might only need to transmit a few bytes of data per hour, but a standard IPv6 
data packet requires a 40-byte header before it can transmit any data at all. The 
communication system must be able to handle very small data packets efficiently. 

Real time capability In some applications, a potentially-dangerous situation detected by an IoT sensor may 
require a rapid response. It must be possible for such a sensor to raise an alarm quickly 
without having to wait until it is polled. 

Mobility End devices can be located in cars, trains or aircraft, so mobility is sometimes required. 
Clearly, the need to support mobility will make the communications solution significantly more 
expensive, so the cost and power requirements listed above may have to be relaxed for 
mobile applications. 

Standards Open APIs will be needed to prevent the IoT from evolving as a series of “walled gardens”. 
Organisations involved in standardisation activities relevant to IoT include oneM2M, W3C, 
Open Geospatial Consortium (OGC), Industrial Internet Consortium, Home Gateway Initiative 
(HGI), IETF, ITU and IEEE. 

 

3.2 Communication Technologies for End Devices 
In some situations, end devices can be connected back to a central system using cables (either 
copper or fibre optic). Copper cables have the significant advantage that they can provide 
power to the end device as well as a data communication path. Copper cables are also likely to 
be simpler and cheaper to install than fibre optics, and the bandwidth available on copper 
cables is nearly always sufficient for IoT applications. However, fibre cables may be deployed in 
difficult or dangerous environments because they are not prone to electrical interference, do not 
present a fire risk and provide a higher level of data security. 

Given the very large number of end devices that typically characterise an IoT application, radio 
is normally a more appropriate solution than cable for data communications. Possible radio 
technologies can be grouped into four main categories: 

● Cellular networks 
● Licensed spectrum 
● Unlicensed spectrum 
● White space 

Some possible options are assessed in the following sections. 

3.2.1 Cellular Networks 

Cellular networks can be used to supply communication services for IoT applications. These 
would typically be GPRS services, but 3G or 4G mobile network services could be used for 
higher bandwidth requirements. In the UK, O2’s GPRS network will be used to connect smart 
meters in central and southern regions of the UK. 

Some strengths and weaknesses of cellular networks for IoT applications are set out in the table 
below: 
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Table 3: Cellular Networks for IoT Applications 
Advantages  Disadvantages 
● Cellular networks already exist, so new applications can 

be implemented quickly. 
● Cellular networks offer reasonable coverage. 

● Gaps in network coverage (particularly in-building 
coverage). For smart metering in some parts of the 
UK, O2’s GPRS network will have to be supplemented 
by wireless mesh technology. 

● High power consumption. Smartphone users have 
become accustomed to recharging their devices 
almost every day, whilst IoT devices may be required 
to operate for ten years between battery changes. 

● High monthly charges. The commercial model for 
providing network connectivity to smartphone and 
tablet users is clearly very different from the 
commercial model for IoT devices. IoT applications 
would have to pay for bandwidth and mobility 
capabilities that they do not normally require. 

● Over time, the focus on providing smartphone users 
with higher bandwidth will move cellular network tariff 
models even further away from the low bandwidth / 
power / cost requirements of IoT. 

● The rapid pace of innovation in the mobile market 
means that older technologies such as GPRS could 
soon be withdrawn, leaving IoT users with an 
expensive upgrade path 

● Mobile network congestion can occur at peak times or 
during emergency situations. 

● Commercial mobile networks are not engineered to 
meet the demanding requirements of safety-critical 
applications. 

 

3.2.2 Licensed Spectrum 

One way to avoid interference from other radio users is to build a narrowband radio network 
using licensed spectrum. One example of this is the smart metering network that Arqiva will be 
building in Scotland and Northern England using Sensus Flexnet™ technology operating over 
licensed spectrum in the 400MHz band. Other examples are the Aclara® STAR® Network and 
TTP’s Matrix. 

Some strengths and weaknesses of using licensed spectrum for IoT applications are set out in 
the table below: 

Table 4: Licensed Spectrum for IoT Applications 
Advantages  Disadvantages 
● The use of licensed spectrum means that the network 

should not experience interference from other radio 
users.  

● The use of a private network prevents traffic congestion 
caused by other network users. 

● Since the network is controlled by the user rather than by 
a commercial network operator, any necessary migration 
to a new networking technology can be timed to suit user 
requirements. 

● Licensed bands are likely to permit the use of higher 
power than unlicensed bands, leading to larger coverage 
areas and better building penetration. 

● The need to obtain a spectrum license can delay (or 
even prevent) roll-out. 

● The spectrum license can add significant cost to an 
IoT application. 
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3.2.3 Unlicensed Spectrum 

There are a number of suitable radio technologies for IoT applications that operate in 
unlicensed spectrum in the region of 868MHz in Europe (915MHz in the US) or 2.4GHz. As a 
result of the restricted transmit powers available in unlicensed bands, wireless mesh 
technologies are often used in which remote nodes communicate with the application platform 
by using adjacent nodes as repeaters. Examples of radio technologies that operate in 
unlicensed spectrum include: 

● Silver Spring Networks Frequency Hopping Spread Spectrum Mesh (915 MHz) 
● Itron Frequency Hopping Spread Spectrum Mesh (915 MHz) 
● 802.15.4. ZigBee® Mesh (868MHz, 900MHz or 2.4GHz) 
● 802.11s WiFi Mesh (2.4GHz, 5GHz) 
● SigFox’s Ultra Narrow Band (UNB) (868MHz in Europe; 915MHz in the US) 
● On-Ramp’s Total Reach Random Phase Multiple Access (RPMA) (2.4GHz) 
● Telensa’s PLANet street light control system (868MHz) 
● TTP’s Matrix (most major license-exempt bands) 
● Semtech’s LoRa (866MHz, 915MHz) 
● WiFi-Direct (2.4GHz, 5GHz) 

Some strengths and weaknesses of using unlicensed spectrum for IoT applications are set out 
in the table below: 

Table 5: Unlicensed Spectrum for IoT Applications 
Advantages  Disadvantages 
● No need to obtain a spectrum license  
● No spectrum license fees 
● Many of these technologies are optimised for IoT or M2M 

applications. For example, Sigfox claim that 
communication with a smart meter using their network 
uses 100 times less power than if the communication 
went over a GSM network, thereby extending battery life 
from a few months to 20 years.  

● Wireless mesh topologies may provide a degree of 
resilience that is not available in simple point-to-
multipoint topologies. 

● When operating in unlicensed spectrum, there is 
always the risk of interference from other networks 
that are using the same spectrum. However, spread 
spectrum modulation techniques can be used to 
minimise the risk of interference.  

● Users in unlicensed bands have to operate at 
restricted power levels, so range is limited. This is not 
a problem in urban environments where the distance 
from one node to the next is relatively short, but can 
be a problem in rural areas. It can also be a problem 
during network roll-out, because distant nodes cannot 
communicate until intervening nodes have been built. 

 

Arqiva is building a wireless network dedicated to supporting the Internet of Things across the 
UK. The network will initially go live in ten major cities across the UK, and will be based on 
SigFox’s Ultra Narrow Band (UNB) radio technology. 

3.2.4 White Space 

“White Space” refers to the guard bands that are used to minimise interference between high-
power UHF television transmitters. In spite of the fact that the white space has been deliberately 
left empty in order to prevent interference, it is possible to use this spectrum for other 
applications if certain rules are followed. For example: 

● The equipment must transmit at low power, and use low gain antennas. 
● Transmissions must use a modulation scheme that is unlikely to cause interference.  
● The equipment needs access to GPS so that it can determine its location. Since television 

transmitters operate on different frequencies in different areas, and some frequencies are 
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only used at certain times of day, the equipment uses an online database to determine 
which frequencies are available locally at a particular time.  

Subject to rules of this type, it is possible to open up white space sections of the TV broadcast 
spectrum to other users without causing interference problems. White space is already being 
used in countries such as UK, USA and Singapore. 

Terrestrial television broadcasting lies in a valuable part of the spectrum because sub-800MHz 
frequencies can travel long distances and provide good penetration through foliage and into 
buildings. This means that white space is a particularly attractive option for Internet of Things 
applications. Of course, users still face the potential risk of interference from other users, but 
this is a problem in any unlicensed band, and sensing technology can be used to automatically 
select the least congested channel.  

However, the lack of a single communications standard (such as WiFi in the ISM bands) creates 
new possibilities for interference. IEEE 802.11af (also referred to as White-Fi and Super Wi-Fi) 
is part of the 802.11 family of standards, and was approved in February 2014. It covers wireless 
local area network (WLAN) operation in TV white space spectrum in the VHF and UHF bands 
between 54 and 790 MHz. 

Weightless is a white space technology that is specifically aimed at mainstream IoT 
applications. Operating distances range from a few metres to about 10 km, and data packets 
can be as small as 10 bytes. 
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4 Application Platforms 

For reasons explained in Section 1.3, a peer-to-peer architecture is unlikely to be suitable for 
IoT applications. Instead, most of the intelligence in the system will be centralised in an 
Application Platform as shown in Figure 1. The primary functions of the application platform are: 

● Data collection. The application platform will typically communicate with end devices 
indirectly via aggregator nodes. IP packets arriving at the application platform will therefore 
contain small amounts of data aggregated across a large number of end devices, so the 
application platform will have to extract this information and store it. It will also have to 
manage all the different locations from which it needs to obtain data: These could include 
private end devices that are only accessible by that specific application platform, public end 
devices that make their information available to multiple application platforms and web-
based data feeds (such as weather forecasts) that can enable deeper meaning to be 
extracted from the data. 

● Data segmentation. Once the data is stored in a database, then it should be possible to view 
the data in different ways. For example, if the application is monitoring energy usage across 
a global corporation, it may be necessary to group the data by sensor type, by geographical 
region or by business entity. 

● Data analysis. One of the primary purposes of an IoT application is to extract useful 
information from the collected data. Although each end device is only likely to generate a 
small amount of data, the volume of end devices and other data sources that are likely to be 
used by IoT applications, and the long periods of time over which the data might be 
accumulated, suggests that “big data” analytics will be needed for some IoT applications. It 
will also be necessary to address issues with the quality of the data (eg spurious or missing 
readings). 

● Control. In some cases, the role of the IoT application goes beyond assisting a human 
operator to make decisions and includes some level of delegated authority to make those 
decisions. This could be because the decision is relatively trivial, because the human 
operator is unlikely to be able to react fast enough, or because the IoT is actually likely to 
make a better decision. A good analogy would be the autopilot on a commercial aircraft, 
which can take instructions from the pilot but can also intervene if required. 

● Human interfaces. The information extracted from the raw data needs to be presented via 
user-friendly interfaces that enable human operators to interact with it. These interfaces 
could be provided on laptop computers, tablets, smartphones or any other suitable device. It 
should also be possible to issue alerts via email, SMS or telephone call if the system detects 
that a critical situation may be developing. 

An application platform is likely to run on standard off-the-shelf computing platforms, and 
standard techniques will be used to improve the resilience of the computing platform if this can 
be justified by the application. Whilst an IoT application to control energy consumption across a 
global corporation might require large amounts of servers and storage, controlling energy usage 
in a single home might require nothing more than a smartphone. In some cases, a distributed 
application platform might be used so that time-critical decisions can be made close to the point 
where they are needed, whilst higher-level decisions requiring a wider view can be made further 



Mott MacDonald | The Internet of Things 16 
 

 

back in the network. Since an application platform is normally connected to the internet, its 
physical location is generally not important and it could be cloud-based. 

There is not necessarily a one-to-one relationship between an end device (such as a sensor) 
and the application platform that handles the data that it generates. Although some end devices 
will be restricted to a specific application platform, others may publish their information to any 
application platform that wishes to subscribe to it. Application platforms should be able to collect 
data from a wide range of internet-based sources such as weather reports, TV schedules and 
details of public events. The information collected by an application platform might be related to 
a particular geographical area, but could instead be defined by a particular multi-national 
organisation or a particular market segment. Some IoT applications could have global reach. 

A top-down approach to IoT application development will only take things so far – standards-
based open platforms are required to allow real innovation to flourish. The plethora of highly 
original applications that have appeared on the worldwide web stand in stark contrast to the 
very limited range of network applications that were available in the days when network 
applications were controlled by the network operator. With this in mind, the Web of Things is an 
open architecture that provides an application layer for the Internet of Things in much the same 
way that the web provides an application layer for the internet. There are also a range of 
platforms (such as Thingworx, Raco Wireless’s Omega DevCloud, Axeda’s IoT Platform, Davra 
Networks’ RuBAN and Dizmo’s Interface of Things) that enable rich, interactive IoT applications 
to be built using “drag-and-drop” interfaces without the need for coding.  

Some control applications work quite satisfactorily with relatively simple, pre-determined logic. 
For example, if an alarm clock is set for 6:30am, then it may be perfectly reasonable for a smart 
house to turn on the heating at 6am, start to raise the lighting level in the bedroom at 6:25, have 
fresh coffee ready for 7am and open the garage door at 7:15am. However, applications of this 
type assume that everyday life is predictable, and this is often not the case. An application that 
tries to help by doing the wrong thing is actually more of a hindrance than a help. Parents of 
small children will already be familiar with this type of “help”. 

Most IoT control applications are likely to go well beyond pre-defined logic and attempt to 
emulate human behaviour. They will try to learn how to respond appropriately in a range of 
possible scenarios so that they can deduce how to respond appropriately if they encounter a 
scenario that they have not seen before. In some cases, an IoT application might be able to 
identify useful data affinities that would be invisible to a human operator, so IoT applications 
may be permitted to select some of their own data sources rather than relying on human 
intervention to do this for them. 
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5 Conclusions 

5.1 Future Potential 
The Internet of Things has been described as “the Fourth Industrial Revolution”, and it seems 
likely that at least some of the hype will eventually be justified. However, as is often the case 
with disruptive new technologies, the initial ramp-up is relatively slow until a tipping point is 
reached and the market suddenly takes off. IoT has yet to produce a “killer application” that can 
drive the deployment of 100m+ IoT devices, but the groundwork required to reach this point (in 
terms of technical developments, supplier commitment and standardisation) is being put in 
place.  

The new insights provided by IoT applications can make both natural and manmade systems 
more predictable, and this predictability can lead directly to more efficient operation and 
enhanced quality of service to end users. It is likely that the business case for IoT will often be 
based on these two key benefits. For example, the ability to move from reactive to proactive 
maintenance of machinery can significantly reduce operating costs and equipment downtime. 
Predictability also means that more automation can be introduced into processes, with a 
reduced requirement for operator intervention. Energy usage can be optimised, and resources 
can be used more efficiently. 

One of the key differences between IoT applications and the M2M applications that preceded 
them is that IoT is expected to analyse much larger data sets in much more sophisticated ways, 
thereby providing information that is potentially far more useful. There are plenty of examples of 
organisations that already collect very large amounts of data but the information extracted is 
little more than a status report. There are also tantalising glimpses of what could be achieved by 
more sophisticated data processing. The collection of the data and the development of the data 
analytics need to advance hand-in-hand if the full potential of IoT is to be achieved. 

5.2 Possible Problems 
Although the Internet of Things appears to have a bright future, there are some potential 
problems that could prevent it from achieving its full potential. These problems have been 
divided into Technical and Societal problems in the tables below. 

Table 6: Technical Problems 
Problem  Details 
Lack of Common Standards As with many emerging technologies, IoT currently suffers from a lack of standards. If 

devices from one vendor cannot communicate with an application from another vendor, 
then potential applications will be severely restricted.  

Lack of Network Addresses Estimates of the number of devices connected to the Internet of Things vary 
considerably, but the number is already measured in billions and seems likely to reach 
25-50 billion by the end of the decade. Not every device on the IoT will have its own IP 
address but, given the current shortage of IPv4 addresses on the internet, it seems 
inevitable that the global adoption of IPv6 (with its far larger range of addresses) will be 
critical for the successful development of IoT. 

Managing Big Data In recent years, the IT industry has placed considerable focus on the problems of 
managing and interpreting “big data”, so it is reasonable to assume that the 
technologies and processes required for this aspect of IoT have already been 
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Problem  Details 
developed. However, it is possible that some users of IoT applications will 
underestimate the quantity of data that they will have to manage. 

Environmental Concerns Adding electronics to mundane devices such as door handles or thermostats is a key 
feature of IoT. However, the electronics is likely to have a much shorter replacement 
cycle than the equipment in which it is embedded, leading to higher levels of waste. The 
recycling of semiconductors is a particular issue because of the toxic chemicals that are 
used during the manufacturing process. 

 

Although potentially challenging, technical problems can typically be solved if consensus can be 
reached across a relatively small number of industry experts. Societal problems, on the other 
hand, tend to require wider public debate and have the potential to become political. 

Table 7: Societal Problems 
Problem  Details 
Privacy IoT applications can acquire a great deal of personal information that would be useful to 

3rd parties for both legitimate and illegitimate reasons. For example, a smart home 
might know what time you are likely to leave the house on a particular day, and when 
you are likely to return. In fact, it might know a surprising amount about many of your 
personal habits, and may even be able to detect whether you are feeling unwell or 
unhappy. Some IoT applications will also use technologies such as RFID and GPS to 
track your location. Not surprisingly, privacy advocates and civil liberties campaigners 
have significant concerns about the potential use of IoT technologies by governments 
and large corporations to intrude into peoples’ lives. 

Security As IoT applications migrate from interesting research projects to mission-critical 
business tools, the issue of security will become increasingly critical. IoT systems are 
likely to hold sensitive data relating to people and businesses, and many of the new 
applications proposed for IoT involve potentially-unsafe activities such as sharing data 
between systems and providing access to users via personal handheld devices. 
Furthermore, the IoT could be controlling dangerous machinery used in transport or 
industrial applications, so the risks are not confined to the virtual world. Although there 
is clear recognition that security is an issue, it seems inevitable that IoT applications will 
occasionally be hacked, and that real damage will occur as a result.   

Legal Liability If advanced IoT systems have the ability to initiate actions without the need for human 
intervention, then it raises some interesting legal questions about who is liable if they 
make a bad decision. Of course, industrial control systems have been taking potentially-
dangerous decisions for many years, but the sophistication of some IoT systems is 
likely to go well beyond the deterministic logic used by most control systems. It is 
possible that current developments in driverless cars will help to clarify the law in this 
area. 
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