First generation of zero-carbon emission aircraft needs hydrogen technologies by 2025

FlyZero, the UK study into zero-carbon emission commercial air travel, has published its vision for a new generation of aircraft powered by liquid hydrogen.

The report “The UK Vision for Zero-Carbon Emission Air Travel” marks the conclusion of a 12-month study which set out to consider the feasibility of zero-carbon emission aircraft. The project concludes that aviation can achieve net zero 2050 through the development of both sustainable aviation fuel (SAF) and green liquid hydrogen technologies.

As the only infrastructure and management consultancy to work on FlyZero, Mott MacDonald seconded its head of aviation strategy and forecasting James Cole as strategy manager. James, led the development of the market forecasts and commercial strategy for the development of zero carbon emissions aircraft, identifying market demand and opportunities, and strategies to roll-out zero carbon emissions aircraft and maximise their impact in reducing aviation’s atmospheric carbon emissions.

 

 

To secure market share on new hydrogen-powered aircraft, UK companies must be ready to demonstrate technologies by 2025. This timescale is key for new zero-carbon emission aircraft to enter service by 2035 and to achieve the net zero 2050 target.

Led by the Aerospace Technology Institute and backed by the UK government, FlyZero has concluded that green liquid hydrogen is the optimum fuel for zero-carbon emission flight and could power a midsize aircraft with 280 passengers from London to San Francisco directly, or from London to Auckland with just one stop.

Introducing a midsize hydrogen-powered aircraft by 2035 and a narrowbody aircraft by 2037 represents the greatest opportunity for reducing carbon emissions and maximising market impact. Aviation’s carbon emissions would reduce by four gigatons (Gt) up to 2050, equivalent to four years’ of total global aviation carbon emissions, if half the commercial fleet were hydrogen-powered by then, and 14 Gt by 2060.1

The UK can build on decades of expertise in aerospace innovation to propel a new generation of liquid hydrogen-powered aircraft into our skies, working with global OEMs, governments, and regulatory bodies. With targeted investment in technology, the UK could grow its market share in civil aerospace from 12% today to 19% by 2050, increasing the sector’s gross value added to the economy from £11bn to £36bn and the number of aerospace jobs from 116,000 to 154,000.

The report sets out how aviation can keep businesses, cultures, families and nations connected without the carbon footprint. Realising this presents challenges for all facets of our aerospace and aviation sectors as well as wider industries and energy infrastructure. An integrated, collaborative, international approach to these challenges is needed to protect our planet, maintain the benefits of aviation and secure economic growth.

In parallel, the UK must also continue to advance technologies required for sustainable aviation fuels (SAF) as both SAF and liquid hydrogen are needed to achieve the net zero 2050 target.

James Cole, said: “The FlyZero project has shown that not only is zero carbon emissions flying with green hydrogen possible, but that it will be the most sustainable and affordable solution to decarbonising aviation in the future. Hydrogen flight will allow people to continue to travel in an affordable way to visit friends and relatives, experience new cultures and do business globally.”

Chris Gear, project director said: “Zero-carbon emission flight can be a reality. Tackling the challenge of our generation requires accelerated technology development and urgent investment in green energy together with regulatory and infrastructure changes.

“The next three years are crucial to develop the technologies, build our skills in liquid hydrogen and demonstrate capability here in the UK to enable our aerospace sector and supply chain to secure its role in a new era for aviation.

“Realising hydrogen powered flight by 2035 is a huge challenge but is essential if we are to maintain the social and economic benefits of air travel while protecting our planet and meeting our commitments to fight climate change.”

The report published today summarises FlyZero’s findings in a range of key areas:

  • Technology - revolutionary technology breakthroughs are required in six areas to achieve zero-carbon emission flight: hydrogen fuel systems and tanks, hydrogen gas turbines, hydrogen fuel cells, electrical propulsion systems, aerodynamic structures and thermal management. The UK has expertise and capability today in these, but little in liquid hydrogen fuels.
  • Carbon emissions – global cumulative CO2 emissions from aviation could be reduced by 4 gigatons (Gt) by 2050 and 14 Gt by 2060. This requires 50% of the commercial fleet to be hydrogen-powered by 2050 and assumes midsize hydrogen-powered aircraft are operating by 2035, with hydrogen-powered narrowbody aircraft in service by 2037.
  • Non-CO2 emissions – burning hydrogen in a gas turbine emits no CO2 or SOx but water emissions are over 2.5 times higher than for fossil fuel-powered aircraft. Particulate matter will largely be eliminated, and it is estimated that NOx emissions will be reduced by 50 to 70%.
  • Sustainability - developing a new generation of aircraft presents an opportunity to integrate sustainability into design and manufacture, and further improve the reuse of materials.
  • Economics - from the mid-2030s liquid hydrogen will be cheaper than the most widely available sustainable aviation fuel (SAF), power-to-liquid.
  • Market impact - the optimum route to decarbonising aviation is through the accelerated introduction into service of a large commercial aircraft similar to FlyZero’s midsize concept which is capable of reaching anywhere in the world with just one stop. Less commercially risky than developing a narrowbody first, this midsize first approach would also allow infrastructure development to be focused on fewer, but larger international hub airports.
  • Infrastructure and operations - generating the quantity of hydrogen needed for aviation will require unprecedented renewable energy capacity. Transporting hydrogen to airports will require gaseous pipelines or liquid hydrogen tanker deliveries, while refuelling aircraft will require larger diameter hoses and increased automation to ensure it can take place safely and efficiently alongside other aircraft.
  • Research – the UK requires a hydrogen research and development facility with open access for academia and a range of industries including aerospace, automotive, marine, space and energy.
  • Climate science – research into the climate impact of emissions from hydrogen gas turbines including through modelling and testing is fundamental alongside the technology development.

The FlyZero project is publishing its detailed conclusions through a series of reports which explore the technology challenges, manufacturing demands, operational requirements, market opportunity and sustainability credentials of zero-carbon emission commercial aircraft. A series of more detailed and technical reports together with new supporting research from industry and academia are also available to organisations that meet the requirements of an access test. For a full list of reports and information on how to access them, visit ati.org.uk/flyzero-reports.

The FlyZero project has made some initial conclusions that require further investigation and investment to understand the feasibility and approach to innovation for the next phase. To this end the Aerospace Technology Institute (ATI) will incorporate the findings from the project into its forthcoming technology and portfolio strategies and look to pursue opportunities for the UK.

1. Four gigaton accumulative reduction compared to forecasted growth in passenger numbers with no hydrogen aircraft in service. Annual carbon emissions based on 2019 data of one gigaton CO2 per year.

Press and media enquiries

Get in touch with our press office.